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Abstract—In this paper, we propose a Joint Semantic Trans-
fer Network (JSTN) towards effective intrusion detection for
large-scale scarcely labelled IoT domain. As a multi-source
heterogeneous domain adaptation (MS-HDA) method, the JSTN
integrates a knowledge rich network intrusion (NI) domain
and another small-scale IoT intrusion (II) domain as source
domains, and preserves intrinsic semantic properties to assist
target II domain intrusion detection. The JSTN jointly transfers
the following three semantics to learn a domain-invariant and
discriminative feature representation. The scenario semantic
endows source NI and II domain with characteristics from each
other to ease the knowledge transfer process via a confused
domain discriminator and categorical distribution knowledge
preservation. It also reduces the source-target discrepancy to
make the shared feature space domain-invariant. Meanwhile, the
weighted implicit semantic transfer boosts discriminability via a
fine-grained knowledge preservation, which transfers the source
categorical distribution to the target domain. The source-target
divergence guides the importance weighting during knowledge
preservation to reflect the degree of knowledge learning. Addi-
tionally, the hierarchical explicit semantic alignment performs
centroid-level and representative-level alignment with the help of
a geometric similarity-aware pseudo-label refiner, which exploits
the value of unlabelled target II domain and explicitly aligns
feature representations from a global and local perspective in
a concentrated manner. Comprehensive experiments on various
tasks verify the superiority of the JSTN against state-of-the-art
comparing methods, on average a 10.3% of accuracy boost is
achieved. The statistical soundness of each constituting compo-
nent and the computational efficiency are also verified.

Index Terms—Internet of Things (IoT), Intrusion Detection,
Domain Adaptation, Semantic Transfer, Heterogeneity

I. INTRODUCTION

AS the Internet of Things (IoT) devices become more
ubiquitous in our daily life [2]–[4], they have trans-
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formed various fields such as healthcare [5], [6] and public
transport [7] into a smart space. However, IoT infrastructures
are usually formed by resource-limited devices with infrequent
security maintenance effort from their vendors [8], which
poses security threats for malicious attacks to take advantage
of IoT security flaws and perform intrusions which harm the
underlying IoT infrastructures [9], [10] and the applications
they support. Therefore, a robust intrusion detection system
(IDS) [11] is crucial to effectively detect these malicious
intrusions faced by IoT infrastructures.

With the rapid development of machine learning (ML) and
deep learning (DL) techniques, recently, several DL-based
IDSs become popular. For instance, Anthi et al., [12] analysed
the IDS performance of several supervised methods under
the smart home IoT scenario, such as Naive Bayes classifier,
Support Vector Machine, etc. The results verified the intrusion
detection (ID) effectiveness of these methods. However, these
methods highly depend on a vast amount of fully labelled data,
which is expensive to collect and labourious to annotate. This
is particularly difficult for IoT intrusion (II) detection, since
data generated by IoT devices usually involves user privacy
issues [13], [14], which hinder the publication of IoT intrusion
detection data. Besides, these ML models are less capable of
handling newly emerged intrusion types due to the shortage
of annotated data. Considering that intrusion detection data
for IoT is expensive to collect and seldom available, several
domain adaptation (DA) approaches were proposed to transfer
the rich knowledge from network intrusion (NI) domain to
facilitate the intrusion detection for label-scarce IoT domains.
Since the NI data is relatively richer than II domains [15],
these DA approaches treated the NI as the source domain,
and the II as the target domain. As the network and IoT share
several common attack types, by mapping both domains into
a common feature subspace, these DA approaches can transfer
the enriched NI knowledge to assist intrusion detection in the
target IoT domain. For instance, Vu et al., [16] utilised two
autoencoders as feature extractors for source and target do-
main, and minimised the maximum mean discrepancy (MMD)
between their bottleneck layers to achieve knowledge transfer.
However, previous DA-based ID models usually produced
coarse-grained alignment. They aligned the source and target
domain into a common feature subspace by brute force without
transferring intrinsic semantic properties, which may result in
instances from different categories being confounded together
and therefore hurt the discriminability of learned features.

To address the limitations of coarse-grained DA-based ID
models and facilitate better transferability, in this paper, we
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propose a Joint Semantic Transfer Network (JSTN) which
leverages the intrinsic semantic knowledge between domains
to facilitate a more fine-grained knowledge transfer. Consider-
ing that there is a huge domain gap between the source NI and
target II domain due to heterogeneities such as different feature
representations, different distributions, etc., the effectiveness
of direct domain adaptation may be hindered. Hence, to ease
the adaptation process, we utilise another labelled II domain
as source domain, which is smaller in scale than both the
source NI and target II domain, to partially mask the het-
erogeneities. All domains have their own domain encoders to
map instances into a common feature subspace, and a domain
discriminator is confused to shorten the source NI - source
II divergence and the source-target divergence. The predicted
categorical distribution knowledge is also transferred between
source domains for better discriminability. By introducing
this auxiliary small-scale source II domain, it can equip the
heterogeneous source NI domain with the semantics of IoT
scenarios. By drawing the network and IoT intrusion scenarios
closer and letting them become similar to partially mask
scenario heterogeneities, the source NI and II domain form
a holistic source domain with rich intrusion knowledge and
IoT scenario characteristics, which can therefore benefit the
source-target knowledge transfer performed later.

Additionally, to overcome the category confounding caused
by the coarse-grained feature alignment, we propose a
weighted implicit semantic transfer, which preserves the cor-
relation knowledge between categories from the source to
the target domain. It is intuitive that the same class from
either source or target domain should share a relatively similar
categorical distribution. During weighted implicit semantic
transfer, the knowledge from the source NI and II domain
are weighted based on their divergence with the target domain
to dynamically emphasise varied source domain importance
which reflects the degree of knowledge learning. The weighted
implicit semantic alignment can effectively enhance the dis-
criminability of the learned feature.

Given that the majority of target II domain instances are
unlabelled, while exploring unlabelled target data is beneficial
during domain adaptation [1], [17], especially when there
are huge heterogeneities present between domains. There-
fore, we propose a hierarchical explicit semantic alignment
from centroid-level and representative-level. The centroid-level
alignment matches each category between the source domain,
the target domain, and the combination of source and target
domain from a global centroid perspective. Considering that
only utilising the global centroid-level alignment may hurt
the concentration of aligned features, we also leverage the
representative-level alignment, which performs a class-wise
representative selection and minimises the pairwise divergence
between class-wise representatives from source and target
domain. Hence, it boosts the concentration of aligned features
yielded by the semantic alignment from a local perspective
without causing heavy computational burden. To fully excavate
the potentials of unlabelled target II data during hierarchical
explicit semantic transfer and avoid the misleading direct
pseudo-label assignment [18], [19], a pseudo-label refiner
(PLR) is leveraged to assign unlabelled target II instances with

pseudo-labels via an ensemble approach. It will investigate the
geometric similarity between each unlabelled target instance
and the centroid of labelled instances of each category, and
regard the most geometrically similar category as the geo-
metric label. Then, the pseudo-label refiner will only assign
pseudo-label to an instance if the geometric label agrees
with the prediction yielded by the shared classifier. Assisted
by the more accurate pseudo-label refiner, the hierarchical
explicit semantic alignment with a global and local perspective
can explicitly minimise domain divergence in a concentrated
manner and promote discriminability.

Ultimately, by jointly utilising these semantics, the JSTN
model can robustly transfer enriched knowledge from the
knowledge rich NI domain and a small-scale II domain to
facilitate more accurate intrusion detection of the scarcely-
labelled target II domain and hence secure the IoT infrastruc-
tures.

In summary, the contributions of this paper are as follows:

• We utilise the joint semantic transfer to leverage the
enriched knowledge of NI domain with the help of an
auxiliary small-scale II domain to facilitate more accurate
intrusion detection of the large-scale scarcely-labelled
target II domain.

• We propose a novel Joint Semantic Transfer Network
(JSTN) that explores and excavates the semantic transfer
to achieve a more effective intrusion knowledge transfer
despite significant heterogeneities present between NI and
II domains.

• We conduct comprehensive experiments of several tasks
on 5 well-known intrusion detection datasets and demon-
strate the effectiveness of the JSTN algorithm, exceeding
state-of-the-art comparing methods.

The rest of the paper is organised as follows: Section
II summarises related works on signature-based, ML-based
and DA-based ID approaches, explains their limitations and
reveals our research opportunities. Section III presents the
model and the architecture of the JSTN method. The details of
the proposed JSTN method are presented in Section IV. The
experimental setup, results and insight analyses are given in
Section V. Section VI concludes the paper.

II. RELATED WORK

A. Signature-based Intrusion Detection

As a popular research direction, several signature-based
intrusion detection methods have been proposed. They main-
tained a set of signatures or rules of malicious attacks and
performed intrusion detection by matching incoming network
traffic with these pre-defined attack patterns. Zhang et al., [20]
proposed a preventive measure specifically targeting DDoS
attacks on IoT devices. It kept track of the content of incoming
requests. If requests from a node show a pattern, e.g., similar
meaningless content being repeatedly sent, the preventive mea-
sure will flag the corresponding sender as malicious and refuse
its future requests subsequently. Dietz et al., [21] proactively
performed an automatic scan of neighbouring IoT devices
for potential vulnerabilities such as using default credential
settings. Once a vulnerable IoT device is detected, it will
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be temporarily isolated since these IoT devices suffer from a
higher chance to be compromised and be manipulated as part
of the malicious Botnet. Chen et al., [22] utilised complex
event processing (CEP) technique, a technique to filter and
process real-time events. The CEP required a pre-defined
rule pattern repository which contains rules and patterns of
common IoT security violations. Summerville et al., [23]
presented a lightweight deep packet anomaly detection strategy
via efficient bit-pattern matching. The patterns of the payload
contents were studied, and the n-gram matching algorithm was
leveraged to find pattern matching in an efficient manner.

Although these previous signature-based ID methods can
produce satisfying results, they require substantial expert
knowledge to build the pattern repository as the working
foundation. The expert knowledge is usually labourious to
acquire, barely thorough and complete, and is unable to tackle
newly emerged attack types if the pattern repository is not
updated on a frequent basis. Hence, it leaves rooms for other
research directions.

B. Machine learning-based Intrusion Detection

Machine learning and deep learning techniques can also be
applied to tackle intrusion detection for IoT scenarios. Shukla
[24] presented several new intrusion detection methods based
on K-means clustering, decision tree, and an ensemble of
these two classical ML algorithms. The proposed approach is
lightweight, and is capable of accurately detecting wormhole
attacks targeting IoT under 6LoWPAN network environment.
Anthi et al., [12] focused on the intrusion detection of smart
home IoT devices. Several popular classifiers such as Naive
Bayes, support vector machines, etc., were evaluated to de-
tect 4 mean network attack categories on a realistic testbed.
Ge et al., [25], McDermott et al., [26] and Meidan et al.,
[27] all focused on leveraging deep learning-based methods.
A feedforward neural network, bidirectional-LSTM recurrent
neural network and a deep autoencoder were constructed to
perform intrusion detection for IoT devices, respectively, and
demonstrated satisfying outcomes.

However, these ML and DL-based methods require a large-
scale labelled dataset, which is expensive and labourious to
acquire. Some datasets become out-of-date quickly as IoT de-
vices and attacks keep evolving, which hinder the effectiveness
of these methods. Therefore, it naturally leads to the domain
adaptation-based (DA) methods [28], [29], which performs
knowledge transfer to facilitate intrusion detection of data-
scarce IoT spaces.

C. Domain Adaptation and its application in Intrusion Detec-
tion

Heterogeneous Domain Adaptation HDA transfers knowl-
edge from a knowledge rich domain to facilitate learning in a
similar but knowledge scarce target domain. The source and
target domain present heterogeneities. For instance, intrusion
data from the network and IoT domain can have different
types of devices that work under different environments,
using different feature sets, and follow different distributions,
etc. Several research efforts have been presented to address
the HDA problem with specific focus on the feature-level.

Wang et al., [30] utilised manifold alignment (DAMA) to
construct mappings to project source and target data to a latent
space while preserving the label topology. Hoffman et al.,
[31] presented max-margin domain transforms (MMDT) to
simultaneously learn the feature projection and the classifier.
Chen et al., [32] proposed the transfer neural tree (TNT)
algorithm with stochastic pruning to perform feature trans-
formation and enhance prediction accuracy. Yao et al., [33]
proposed the discriminative distribution alignment (DDA) that
incorporated several losses such as cross-entropy loss (DDAC)
and squared loss (DDAS) to improve the data separability
during alignment. However, these methods mainly focused
on the feature-level information, none of them leveraged
the intrinsic semantic correlations contained in the predicted
distributions, which may result in confounded attack types and
confused predictions if work on IoT intrusion detection.

Besides, some research efforts tackled the HDA problem
by explicitly enforcing domain alignment. Tsai et al., [18]
presented cross-domain landmark selection (CDLS) to learn a
domain-invariant feature subspace for HDA via cross-domain
landmarks. To jointly match the marginal and class-conditional
distributions, Hsieh et al., [19] presented the generalized joint
distribution adaptation (G-JDA) method and confirmed its
effectiveness. To circumvent the negative effect brought by
falsely-assigned pseudo-labels, Yao et al., [34] proposed the
soft transfer network (STN) which utilised soft labels during
alignment. However, some of these methods directly used
the predicted label as pseudo-label, which will cause severe
negative transfer due to falsely-assigned pseudo-labels. These
wrong labels will mislead the model, the model will then
accumulate more wrong labels, which forms a negative loop.
Although methods such as STN attempted to avoid the nega-
tive transfer incurred by wrongly-assigned pseudo-labels, they
failed to consider the intrinsic geometric semantic contained in
the feature space, which can effectively guide the pseudo-label
assignment and boost the pseudo-label confidence.

Finally, considering that utilising two source domains may
enhance the knowledge transfer process, Yao et al., [35] pro-
posed a conditional weighting adversarial network (CWAN)
to address the multi-source HDA problem. However, it did
not verify the effectiveness of multi-source DA method on
intrusion detection tasks, which left a void to be filled. Hence
it did not attempt the idea of scenario semantic to be used
between network and IoT domains either, and also lacked the
joint consideration of semantic transfer.

Domain Adaptation-based Intrusion Detection The ca-
pability of the DA to transfer knowledge and facilitate robust
learning in the target domain makes it a perfect choice for
intrusion detection. Vu et al., [16] trained two autoencoders
for a label rich and a label scarce IoT domain separately, and
bridged the gaps between the bottleneck layers of these two
autoencoders by minimising the maximum mean discrepancy
(MMD). Hu et al., [36] proposed a deep subdomain adap-
tation network with attention mechanism (DSAN-AT), which
utilised the local MMD to boost the prediction accuracy and
an attention mechanism to prevent overly long convergence
time. To circumvent the labour-intensive dataset collection
process, Ning et al., [37] proposed a knowledge transfer
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Fig. 1. The architecture of the JSTN model.

(KT) ConvLaddernet to work under a semi-supervised setting,
i.e., transfer knowledge from a small-scale source domain to
facilitate intrusion detection of the target domain. Although
previous DA-based methods have been applied to perform
intrusion detection, they failed to jointly consider the implicit
categorical and explicit distance semantics during knowledge
transfer, which may hinder their effectiveness. Besides, these
DA-based methods did not realise that utilising a network
intrusion domain plus a small-scale IoT intrusion domain
can boost the intrusion performance of a large-scale scarcely-
labelled target IoT domain. Hence, they left the potential of
scenario semantic untouched.

III. MODEL AND JSTN ARCHITECTURE

In this section, we will mainly present the problem setting,
followed by the architecture of the JSTN algorithm.

A. Model Preliminary

The Joint Semantic Transfer Network (JSTN) works under a
semi-supervised setting. More specifically, it involves a source
NI domain that is defined as follows:

DSN = {XSN ,YSN} = {(xSNi, ySNi)},
xSNi ∈ RdSN , ySNi ∈ [1,K], i ∈ [1, nSN ] ,

(1)

where the source NI domain contains nSN instances with
their corresponding label, each instance is a dSN -dimensional
vector, and each label is within a total of K categories.
Similarly, the small-scale source II domain is defined in a
similar way as follows:

DSI = {XSI ,YSI} = {(xSIi, ySIi)},
xSIi ∈ RdSI , ySIi ∈ [1,K], i ∈ [1, nSI ], nSI < nSN .

(2)

Note that the amount of instances in the source II domain
is smaller than the source NI domain due to data scarcity of
IoT domains. Together, both the source NI domain DSN and
the source II domain DSI form the source domain DS =

{XS ,YS} = DSN ∪DSI , nS = nSN + nSI . Under the semi-
supervised setting, the target II domain is scarcely-labelled,
and is defined as follows:
DTL = {XTL,YTL} = {(xTLi, yTLi)},
DTU = {XTU} = {(xTUj)},DT = DTL ∪ DTU

xTLi, xTUj ∈ RdT , yTLi ∈ [1,K], i ∈ [1, nTL], j ∈ [1, nTU ]

nT = nTL + nTU , nTL ≪ nTU ,
(3)

where only a small amount of target II data is labelled, i.e.,
nTL ≪ nTU . The source NI domain, source II domain and
the target II domain present heterogeneities as they come from
distinct feature spaces, i.e., dSN ̸= dSI ̸= dT . All notations
used in this paper, and their corresponding interpretations, are
presented in the Appendix to ease understanding.

B. JSTN Model Architecture

The architecture of the JSTN model is illustrated in Figure
1. For each domain, a feature encoder E is utilised to map the
original feature into a shared common feature subspace with
dimension dC . The feature encoder E is defined as follows:

f(xi) =


ESN (xi) if xi ∈ XSN

ESI(xi) if xi ∈ XSI

ET (xi) if xi ∈ XT = XTL ∪ XTU

f(xi) ∈ RdC .

(4)

Instead of aligning heterogeneous domains into a common
feature subspace via brute-force and impair the feature dis-
criminability, we apply a joint semantic transfer strategy to
achieve a more fine-grained knowledge transfer. Specifically,
the scenario semantic transfer partially masks heterogeneities
between source NI and II domain by confusing the domain
discriminator D to produce domain-invariant common feature
subspace. Meanwhile the categorical distribution knowledge
is also transferred between source domains. Additionally, the
weighted implicit semantic transfer is used to transfer the
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correlation relationships between category distributions so that
the category distribution semantic will be preserved by the
target and different categories will not be confounded mistak-
enly during transfer. The knowledge from source domains are
weighted based on their divergence with the target domain to
adaptively emphasise varied source importances which reflect
the degree of knowledge learning. Moreover, the hierarchical
explicit semantic alignment is utilised to explicitly minimise
the gap between instances of the same category from different
domains via a global centroid-level alignment and a local
representative-level alignment to increase discriminability. To
fully explore the potentials of unlabelled target II domain
instances while avoiding negative transfer caused by wrongly-
assigned pseudo-labels, a pseudo-label refiner with an ensem-
ble mechanism is used to leverage the geometric similarity
information to enhance the pseudo-label accuracy. Finally,
the labelled data will provide the supervision for training
via a globally shared classifier C. The ultimate goal of the
model is to use the trained shared classifier C to work on the
common feature subspace, so that the prediction accuracy of
the unlabelled target II data is maximised.

IV. THE JSTN ALGORITHM

This section focuses on the detailed mechanisms of three
JSTN constituting semantics, with their advantages explained
in details. We then present the overall optimisation objective.

A. Scenario Semantic Transfer

1. The Auxiliary Source II Domain
The network intrusion data is rich in scale and intrusion

knowledge, while the IoT intrusion data have rich IoT scenario
characteristics. However, significant heterogeneities present
between network and IoT intrusion domains as illustrated in
Figure 2. For instance, the network intrusion data are usually
captured from servers in data centres, while IoT intrusion
data comes from resource-constrained IoT infrastructures.
Their diverse device types and working environment lead
to heterogeneities such as different set of features, different
feature dimensions, follow different distributions, etc. On the
other hand, although there are also heterogeneities between
different II domains, however, the gap between II domains is
smaller than the gap between NI and II domain. For example,
although a fridge temperature monitor and a parcel GPS
tracker have different functionalities, they usually work under
similar network conditions compared with servers in top-tier
data centres, they may utilise the same IoT network protocol
that is different from servers, and hence the similarity between
different II domains are higher than between NI and II domain.
If we directly transfer the knowledge from NI domain to II
domain via domain adaptation to facilitate intrusion detection,
the huge domain gap between NI and II is still likely to hinder
the effectiveness of knowledge transfer as in Figure 2. Since it
not only needs to ensure fine-grained knowledge transfer, but
also needs to tackle significant divergences caused by different
network protocol usages between domains, etc.

However, if the source NI domain can be endowed with
the IoT scenario semantic by using even a small amount of II
data that is not from the target II domain due to target data

Fig. 2. By introducing an auxiliary SII domain, it can partially mask
the scenario heterogeneities between domains and hence ease the domain
alignment process.

scarcity, the gap between NI and II domain can be bridged
more effectively, which can therefore benefit the source-target
knowledge transfer performed later, as indicated in Figure 2.
Hence, to endow the NI domain with the characteristics of IoT
domains, we use a small amount of II data from another IoT
domain.

2. Scenario Semantic Transfer via Domain Discriminator
The JSTN performs scenario semantic transfer via a domain

discriminator D. When training the domain discriminator D,
data instances from both the source NI and source II domain
will be labelled as 1, while the target II instances are labelled
with 0. By confusing the domain discriminator, the source NI
and source II instances will be fused, so that the NI instances
are equipped with IoT scenario semantic. When the domain
discriminator D is confused to distinguish the domain origin
of instances, it promotes a domain-invariant common feature
subspace to be learned, which can benefit positive transfer. In
the JSTN model, the domain discriminator is a neural network
with a single layer that performs binary classification task with
the loss defined as follows:

LSSD =
1

nSN + nSI

∑
xi∈XSN∪XSI

log(D(f(xi)))

+
1

nTL + nTU

∑
xj∈XTL∪XTU

(1− log(D(f(xj)))) .

(5)

The domain encoders ESN , ESI and ET will try to confuse
the discriminator D while the discriminator tries to stay
unconfused. The common feature subspace yielded by domain
encoders will become domain-invariant when this minimax
game reaches an equilibrium.

3. Scenario Semantic Transfer via Distribution Matching
Besides, the source NI domain should also equip the source

II domain with rich intrusion knowledge via the predicted
categorical distribution knowledge transfer. Although during
knowledge transfer, the source NI and II domain present
heterogeneities, however, it is reasonable that instances from
the same category should possess similar predicted categorical
distribution, irrespective of which domain they come from.
Using objects as the example, a PC monitor should be highly
similar with other PC monitors, relatively similar with TV
screens, and less likely to be similar with a bicycle or an
orange, irrespective of its domain origin. This preservation of
categorical correlation applies for intrusion detection as well.
Hence, transferring this distribution correlation knowledge
will promote a more fine-grained feature alignment between
domains in the common feature subspace, as indicated in
Figure 3. Besides, it avoids mistaken category confounding,
especially at the category boundaries in the learned feature
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Fig. 3. Before categorical distribution matching, the same category between
domains does not align in the common feature subspace, and hence incur
different categorical disbution correlations. After performing the categorical
distribution matching, it forces the categorical distribution of each category
to match between domains, which therefore enforces the category-wise
alignment between domains in the common feature subspace. This figure uses
instances in class 2 as an example.

space that tend to be misinterpreted, since the categorical
distribution can only be matched when the categories between
domain align in the common feature subspace, as illustrated
in Figure 3. Mathematically, the source NI domain average
probabilistic output of each category k serves as the teacher
to transfer the distribution correlation to the source II domain,
and is defined as follows:

q(k) =
1

|X (k)
SN |

∑
xi∈X (k)

SN

softmax(
C(f(xi))

T1
) , (6)

where C(f(xi)) is the logit produced by the shared classifier,
X (k)

SN represents the set of source NI instances belonging to
the kth category, | · | denotes the number of instances, and T1

is a temperature hyperparameter that can smooth or sharp the
categorical distribution during the semantic transfer. Similarly,
the average probabilistic output of each category k of the
source II domain is defined as follows:

p(k) =
1

|X (k)
SI |

∑
xi∈X (k)

SI

softmax(
C(f(xi))

T1
) . (7)

The distribution correlation knowledge is transferred from
source NI domain to source II domain by minimising the
divergence between q(k) and p(k) via the cross entropy loss
defined as follows:

LSSC = −1

k

K∑
k=1

q(k)
⊤
log(p(k)) , (8)

With the help of the scenario semantic, the network data
can mimic the characteristics possessed by the IoT domain
to some extent and increase its similarity with IoT domain,
while the source II domain is also equipped with rich intrusion
knowledge from the source NI domain. Both source domains
will be drawn closer towards each other so that the significant
heterogeneities will be partially masked, which will therefore
ease the source-target knowledge transfer process.

B. Weighted Implicit Semantic Transfer

1. Implicit Semantic Transfer
Transferring the categorical distribution knowledge is useful

not only between source domains, but also between source

and target domains. The average probabilistic output of source
instances belonging to category k is treated as the teacher, or
the “soft label” of category k, which is defined as follows:

q
(k)
S∗ =

1

|X (k)
S∗ |

∑
xi∈X (k)

S∗

softmax(
C(f(xi))

T2
) , (9)

where S∗ ∈ {SN, SI}, T2 is the smoothing temperature
hyperparameter. With the help of the soft label which contains
the implicit semantic, we can let the probabilistic output of all
labelled target instances pi to preserve the implicit semantic
by minimising the soft loss defined as follows:

pi = softmax(C(f(xi))), xi ∈ XTL

LS∗
sf (XTL,YTL) = − 1

nTL

∑
xi∈XTL,yi∈XTL

qyi

S∗
⊤
log(pi) ,

(10)

where pi is the categorical probabilistic output of the ith la-
belled target instance, the soft loss LS∗

sf shortens the divergence
of probabilistic outputs between domains. Besides the soft
label that is rich of implicit semantic, each labelled target II
domain instance also has its corresponding label, i.e., the “hard
label”. The hard label will provide a supervised loss that is
defined as follows:

Lhd(XTL,YTL) =
1

nTL

∑
xi∈XTL,yi∈YTL

Lce(C(f(xi)), yi) ,

(11)
where Lce stands for cross entropy loss.

2. Divergence-based Weighting Scheme
Considering that the source NI and II domain may have

different divergences towards the target II domain, which
implicitly indicate their importance during implicit knowledge
transfer, i.e., the degree of knowledge learning achieved by the
target II domain. The divergence between source domains and
the target II domain d<S∗,TL> are defined as follows:

µ
(k)
S∗ =

1

|XS∗|
∑

xs∈X (k)
S∗

f(xs), µ
(k)
TL =

1

|XTL|
∑

xt∈X (k)
TL

f(xt)

d<SN,TL> =

∑K
k=1 ||µ

(k)
SN − µ

(k)
TL||22

K

d<SI,TL> =

∑K
k=1 ||µ

(k)
SI − µ

(k)
TL||22

K
,

(12)

where µ(k)
S∗ stands for the class k centroid of domain S∗. Then,

the weights ω<S∗,TL> for source domains during implicit
knowledge transfer are defined as follows:

ω<SN,TL> =
ed<SN,TL>

ed<SN,TL> + 1
+ 0.25

ω<SI,TL> =
ed<SI,TL>

ed<SI,TL> + 1
+ 0.25 .

(13)

The weight is controlled within the range between 0.75 and
1.25, so that source domains will neither completely loss its
influence, nor have extremely heavy influence. The smaller
the divergence is, the smaller the weight is and vice versa.
Therefore, if the source domain presents very little divergence
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with the target domain, then it indicates that the target domain
already possesses the knowledge of that source domain, i.e.,
a relatively high degree of knowledge learning, and hence
that source domain is suppressed using a smaller weight.
Conversely, a large divergence between a source domain and
the target domain indicates that the target domain is not yet
fully equipped with the knowledge from that source domain,
i.e., a relatively low degree of knowledge learning, and hence
that source domain will be emphasised by a large weight. By
utilising this weighting mechanism, it can dynamically adapt
the relative importance of source domains during implicit
knowledge transfer to maximise knowledge learning.

Hence, the overall weighted implicit semantic loss LWIS is
defined as follows:

LWIS = (1− α)Lhd(XTL,YTL)+

α(ω<SN,TL>LSN
sf (XTL,YTL) + ω<SI,TL>LSI

sf (XTL,YTL))

2
,

(14)

where hyperparameter α balances the influence between soft
and hard losses. By optimising the weighted implicit semantic
loss LWIS , the correlation within categorical distribution can
be preserved by the target in the common feature subspace, and
hence can prevent the negative transfer caused by confounded
categories without enough discriminability.

C. Hierarchical Explicit Semantic Alignment

1. Pseudo-label Refiner (PLR)
The hierarchical explicit semantic alignment mechanism

benefits the knowledge transfer by minimising the domain
divergence from a distance perspective in a hierarchical man-
ner. Considering that utilising the unlabelled target domain
data during divergence minimisation would be helpful [1],
[17], we perform the pseudo-label assignment process before
transferring the hierarchical explicit semantic. Several previous
DA methods utilised pseudo-label for unlabelled target data,
however, their pseudo-label assignment tended to be inaccu-
rate, which subsequently misled the model training and caused
negative transfer. To circumvent the negative effect caused
by wrongly-assigned pseudo-label, we utilise a pseudo-label
refiner (PLR) based on the ensemble paradigm to improve
the pseudo-label assignment accuracy. For each unlabelled
target II domain instance xi ∈ XTU , the shared classifier
will yield a prediction, which is treated as the neural network
label, denoted as y<NN>

i . Various previous DA efforts di-
rectly utilised the predicted label as pseudo-label assignment,
however, these pseudo-labels are error-prone, especially during
initial training stage. Therefore, we also take the intrinsic
geometric knowledge into account. For both the source data
and the labelled target data, we calculate the centroid of
instances for each class µ(k), which is defined as follows:

µ(k) =
1

|XSN ∪ XSI ∪ XTL|
(

∑
xl∈X (k)

SN

f(xl) +
∑

xm∈X (k)
SI

f(xm) +
∑

xn∈X (k)
TL

f(xn)) ,

(15)

where X (k)
SN means class k XSN instances. After obtaining

the centroid of labelled instances for each category, we can
assign each unlabelled target instance to the category whose
centroid has the highest Cosine similarity with that unlabelled
target instance, namely the geometric similarity-based (GS)
label y<GS>

i . The GS label is decided as follows:

y<GS>
i = argmax

k
{CS(f(xi), µ

(k))}, xi ∈ XTU , (16)

where CS() is the Cosine similarity. Considering that when
the neural network label and the geometric similarity label
reach a consensus, it gives the pseudo-label a stronger confi-
dence to be correct since it is more unlikely for both the trained
classifier and the intrinsic geometric property to reach the
same wrong assignment simultaneously. Hence, the pseudo-
label refiner forms a refinement mechanism. It will only assign
a pseudo-label to the unlabelled target instance if an agreement
is reach, or otherwise that unlabelled target instance will
not have a pseudo-label assignment and will not be utilised
during hierarchical explicit semantic transfer to circumvent
error cumulation. We denote the assigned pseudo-label as ŷi
and denote its corresponding feature vector as x̂i. Hence, the
target instance set will be updated as follows:

XT = XTL ∪ {x̂i},YT = YTL ∪ {ŷi},
i ∈ [1, nTU ], y

<NN>
i = y<GS>

i .
(17)

Initially, the model is not stable enough, hence only a few
pseudo-label will be assigned and a majority of unconfident
pseudo-label assignment will be filtered out to prevent error
cumulation. As the training progresses, assignment agreements
will be reached for more unlabelled target instances, which
will let them to participate in the hierarchical explicit semantic
transfer. Eventually, at later training stage, a majority of
unlabelled instances will be assigned with a consistent pseudo-
label, which can make the unlabelled target instances be
explored as much as possible. Hence, the pseudo-label refiner
can filter out pseudo-label assignments that are possibly wrong
to prevent negative transfer, it forms an automatic pseudo-
label assignment process without requiring human experience
or manually-assigned thresholds.

2. Hierarchical Explicit Semantic Transfer - Global
Centroid Level

With the help of the PLR, we can perform the hierarchical
explicit semantic transfer from two levels. Firstly, a global
level triplet centroid alignment is performed to align category-
wise centroids. Specifically, we can calculate the category-wise
centroid for the source domain µ

(k)
S , target domain µ

(k)
T , and

the combination of source and target domain µ
(k)
ST , which are
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Fig. 4. Illustration of alignment effect of (↑) only apply centroid-level explicit
semantic alignment and (↓) apply the hierarchical explicit semantic alignment.
The dot and rectangle indicate class centroid and class representative points,
respectively. For simplified illustration, only a single class is plotted.

defined as follows:

µ
(k)
S =

1

|X (k)
SN ∪ X (k)

SI |

∑
xi∈X (k)

SN∪X (k)
SI

f(xi)

µ
(k)
T =

1

|X (k)
T |

∑
xj∈X (k)

T

f(xj)

µ
(k)
ST =

1

|X (k)
SN ∪ X (k)

SI ∪ X (k)
T |

(
∑

xi∈X (k)
SN∪X (k)

SI

f(xi) +
∑

xj∈X (k)
T

f(xj)) .

(18)

Then, we explicitly learn a more robust and discrimina-
tive feature representation by minimising the intra-category
divergence, i.e., minimising the L2-distances between each
centroid, which is defined as follows:

LESC =

K∑
k=1

(||µ(k)
S −µ

(k)
T ||22+||µ(k)

S −µ
(k)
ST ||

2
2+||µ(k)

T −µ
(k)
ST ||

2
2) .

(19)
3. Hierarchical Explicit Semantic Transfer - Local Rep-

resentative Level
However, only performing the global-level centroid align-

ment is not enough to achieve fine-grained semantic con-
sistency. As shown in the upper Figure 4, even though the
centroids are alignment, the features can still lack concentra-
tion as indicated by the grey shaded area, which hurts the
semantic transfer. This is due to that centroids only represent
the category at the global level, which lack thorough coverage
of the whole category in a fine-grained manner. Therefore,
the explicit semantic alignment is also performed from a local
perspective to achieve a more fine-grained category coverage.
For each category k in both the source domain and target
domain (DT = (XT ,YT )), R representatives are selected
via Kmeans++ clustering, denoted as rkS(i) and rkT (i), k ∈
[1,K], i ∈ [1, R], respectively. Then, we calculate the pairwise

distances between source and target representatives for each
category as follows:

LESR =

K∑
k=1

∑R
i=1

∑R
j=1 ||rkS(i)− rkT (j)||22

K × |rkS | × |rkT |
(20)

Unlike performing the pairwise divergence minimisation for
all source and target instances as in [38], the hierarchical ex-
plicit semantic works on category-wise representatives, which
avoids the severe computational burden without hurting the
alignment effectiveness. By explicitly minimising the intra-
category divergence from the global-level centroid perspective
and the local-level representative perspective, each domain
in the common feature subspace will be more semantically
consistent in a concentrated manner as indicated in the lower
part of Figure 4.

D. Overall Optimisation Objective

Finally, the ground truth labels of source domains and the
predicted output yielded by the shared classifier will produce
a supervision loss Lsup as follows:

Lsup(XS ,YS) =
1

nS

∑
xi∈XS ,yi∈YS

Lce(C(f(xi)), yi) , (21)

while the supervision loss of the labelled target domain has
been treated as hard label loss in the implicit semantic transfer
as previously mentioned. Overall, the optimisation objective of
the JSTN model is as follows:

min
C,ESN ,ESI ,ET

max
D

{Lsup + LWIS + βLESC+

λLESR + γLSSD + ηLSSC} ,
(22)

where β, λ, γ and η are hyperparameters that control the
influence of loss components during optimisation. Inspired
by [39], we apply the Gradient Reversal Layer (GRL) on
the discriminator to train the entire JSTN network in an
end-to-end manner using Adam gradient descent. By op-
timising the overall objective, the scenario semantic fuses
domains by confusing domain discriminator and meanwhile
transfer knowledge between source domains. Hence, it forms
a domain-invariant feature subspace so that the heterogeneities
between source-source domains and source-target domains
will be minimised. The weighted implicit semantic increases
generalisability through preserving the implicit categorical
distribution knowledge, the knowledge from different source
domains are weighted based on their relative divergence with
the target domain to indicate source importance which reflects
the degree of knowledge learning. Meanwhile, the hierarchical
explicit semantic learns a robust and semantically consistent
common feature subspace with compactness and concentra-
tion from global centroid perspective and local representative
perspective so that the intra-category divergence will be short-
ened. By jointly leveraging these semantics, the knowledge
transfer effectiveness of the model will be enhanced. Upon
the above minimax game reaches an equilibrium, the training
of feature encoders for each domain, the shared classifier C
and the domain discriminator D concludes.
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TABLE I
INTRUSION DETECTION ACCURACY OF 10 METHODS ON 10 TASKS.

SN + SI

→ TI

C +M
→ B

C +W
→ B

C +B
→ G

N +G
→ B

N + F
→ B

N +B
→ W

N +M
→ B

K +M
→ B

K +W
→ B

K +M
→ G

Avg

SB-RF 48.84 46.76 73.40 47.36 64.87 82.30 50.50 48.81 46.65 82.30 59.18

SB-SVM 52.56 50.96 73.60 51.78 67.84 82.40 55.00 52.55 50.28 82.33 61.93

SB-NN 53.01 51.58 73.68 47.51 65.38 82.36 56.62 52.53 51.70 82.35 61.67

SB-TNT 48.22 25.57 73.50 25.93 35.25 82.24 49.50 48.22 24.94 82.25 49.56

SB-DDAC 60.71 53.62 72.84 52.88 72.32 85.60 63.35 60.71 53.05 82.35 65.74

SB-DDAS 58.98 50.84 73.68 52.21 70.21 85.54 61.50 58.98 50.89 82.34 64.52

SB-STN 62.29 54.92 76.83 54.99 71.83 87.00 63.95 62.79 54.44 85.57 67.46

STN 61.77 54.45 76.18 55.20 73.69 86.91 63.79 60.08 54.69 85.15 67.19

CWAN 59.98 52.40 75.84 53.37 72.60 85.17 59.69 60.29 52.99 85.53 65.79

JSTN (Ours) 67.27 69.69 77.08 70.20 86.94 87.78 69.31 66.95 69.73 87.10 75.21

V. EXPERIMENT

A. Dataset and Setup

Network Intrusion Dataset: NSL-KDD The NSL-KDD
(K) [40] network intrusion dataset was released in 2009. It
improves the outdated KDD99 dataset [41] to reflect modern
network attack characteristics. It contains benign traffic with
4 malicious attack categories, such as denial of service (DoS),
probing attack, etc. It does not have redundant or duplicate
records, the quality of data is significantly improved. Follow
[12], we use 20% of the dataset, which is a reasonable
and affordable amount. Each record is represented using 41
features. We follow Harb et al., [42] to choose 31 most
informative features as the feature space.

Network Intrusion Dataset: UNSW-NB15 The UNSW-
NB15 (N) network intrusion dataset [43] was created in 2015
using the IXIA PerfectStorm tool. The dataset also aims to
tackle the limitations such as redundant records or missing
values of previous IDS datasets, especially under a modern low
footprint environment. The dataset contains benign network
behaviours plus 9 attack categories, such as DoS attack, recon-
naissance attack, etc. The dataset contains 257, 646 records,
follow previous work [44], we utilise 6000 entries during
the model training and evaluation. Each record is represented
using 49 features. The preprocessing steps include removing
4 features that have value 0 for nearly all records.

Network Intrusion Dataset: CICIDS2017 The CI-
CIDS2017 (C) [45] network intrusion dataset was released in
2017. It is one of the most up-to-date network traffic datasets.
The data is collected using CICFlowMeter. The dataset has
benign and 7 common intrusion attack types to reflect the
current trend. The attack types including DoS, distributed DoS
(DDoS), Brute Force attack, etc. Portion of the dataset (20%)
[46] has been provided in CSV format for ML training, repre-
sented using 77 features. We perform preprocessing including
data deduplication, and converting categorical attributes to
numerical entries. We follow [12] to utilise 20000 entries
of network traffic, a reasonable amount to train an effective
IDS. Guided by the information gain-based feature selection
work of Stiawan [46] et al., we use the features with top 40
information gain, which can effectively filter out information-
scarce features and improve training efficiency.

IoT Intrusion Dataset: UNSW-BOTIOT The UNSW-
BOTIOT (B) dataset [47] was also created in 2017 with a

specific focus on realistic IoT intrusion scenarios. It applies
5 IoT scenarios in the testbed, including a weather station, a
smart fridge, a smart thermostat associated with in-house air-
conditioning, etc. The testbed also utilises the MQTT protocol,
a lightweight communication protocol commonly used be-
tween IoT devices. Hence, the dataset fills the void of lacking
specific consideration for IoT scenarios. It contains 3 common
IoT attack categories, such as DoS attack, information theft,
etc. Following [44], we utilise 7500 records during the model
training and evaluation. Note that when used as source II
domain, the amount of data is 1/6 − 1/2 of the amount
of source NI data to reflect the reality that IoT intrusion
data is scarcer than network intrusion data. Besides, under
the semi-supervised setting, we follow [1], [34], [37] to vary
the nTL : nTU ratio among 1 : 2, 1 : 10 and 1 : 50,
i.e., the amount of unlabelled target II data is much higher
than the amount of labelled target II data. Each record in the
dataset is represented using 46 features. Following the official
suggestion [47], we utilise the top 10 most informative features
to represent each record.

IoT Intrusion Dataset: UNSW-TONIOT The UNSW-
TONIOT dataset [15] was another popular IoT intrusion
dataset [48] released in 2021. It contains IoT intrusion data
that comply with the protocols, standards and technologies
commonly used by current IoT devices. It further extends the
number of IoT devices used in the testbed and the diversity of
attacks being considered. The testbed operates 7 IoT sensors
such as weather monitor, smart fridge monitor, Modbus sensor,
GPS tracker, etc., and the dataset covers 9 kinds of threats,
including scanning attack, DoS attack, etc. To reflect the
heterogeneities of IoT devices, each IoT device in the dataset
has its own set of features, e.g., the smart garage door will
record the door state, and whether the door receives a control
signal from the phone app, while the GPS tracker will record
the latitude and longitude of the object it attaches on. We select
4 representative IoT devices (weather monitor, modbus sensor,
GPS tracker and fridge monitor) and in total utilise 21900
records from the dataset, which account for around 10% of
the data and is reasonable for model training and evaluation
[44], [49]. Following the setting of UNSW-BOTIOT dataset,
when being used as the source II domain, the amount of data
is around 1/5 − 1/2 compared with the source NI domain
data, and the nTL : nTU ratio is varied among 1 : 5, 1 : 10
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TABLE II
INTRUSION DETECTION ACCURACY UNDER VARIED nTL : nTU RATIOS.

SN+SI → TI N +M → G K +B → W N +G → W

nLT : nUT 1 : 5 1 : 10 1 : 50 1 : 5 1 : 10 1 : 50 1 : 5 1 : 10 1 : 50

SB-RF 93.33 93.32 93.28 73.68 73.65 73.61 82.36 82.35 82.33

SB-SVM 93.32 93.29 93.26 75.74 75.36 73.64 85.15 85.07 82.34

SB-NN 93.33 93.32 93.30 73.69 73.62 73.51 84.13 84.07 83.78

SB-TNT 93.30 93.28 93.22 73.54 73.53 73.52 82.25 82.24 82.22

SB-DDAC 93.33 93.33 93.31 78.92 78.90 78.65 85.60 85.58 85.50

SB-DDAS 93.33 93.32 93.30 75.81 75.70 75.63 85.71 85.52 85.38

SB-STN 93.48 93.33 93.19 79.55 79.50 76.85 86.65 86.53 85.48

STN 92.99 92.94 92.39 79.52 78.76 77.92 86.53 86.52 86.37

CWAN 93.50 93.33 93.00 78.46 78.42 78.02 85.80 85.38 84.63

JSTN (Ours) 94.46 94.01 93.96 80.50 79.95 78.84 87.34 87.26 87.19

TABLE III
(CONTINUED FROM TABLE II) INTRUSION DETECTION ACCURACY UNDER VARIED nTL : nTU RATIOS.

SN+SI → TI C +W → B N +M → B N +W → B
Overall Avg 1 : 50 Case Avg

nLT : nUT 1 : 2 1 : 10 1 : 50 1 : 2 1 : 10 1 : 50 1 : 2 1 : 10 1 : 50

SB-RF 46.76 46.70 46.53 50.50 50.22 50.08 47.38 47.37 47.35 65.60 65.53

SB-SVM 50.96 49.49 48.51 55.03 54.10 53.49 51.47 50.04 48.98 67.74 66.70

SB-NN 51.58 48.67 48.50 56.62 53.59 53.20 51.50 50.92 50.67 67.67 67.16

SB-TNT 25.57 25.45 24.99 49.50 49.33 49.00 25.93 25.78 25.60 58.24 58.09

SB-DDAC 53.62 52.55 51.83 63.35 62.05 60.80 52.95 52.79 52.75 70.88 70.47

SB-DDAS 51.84 51.60 49.80 61.50 59.45 58.70 51.97 51.90 51.30 69.54 69.02

SB-STN 54.92 54.47 52.74 63.95 62.19 62.07 54.60 54.28 53.01 71.49 70.56

STN 54.29 53.06 51.78 61.98 60.91 55.94 54.08 53.24 52.61 70.66 69.50

CWAN 52.40 51.87 51.77 59.69 58.32 56.28 53.03 52.12 52.10 69.90 69.30

JSTN (Ours) 69.69 66.49 61.96 69.31 67.71 67.65 69.93 67.24 67.15 77.26 76.13

and 1 : 50. The UNSW-TONIOT dataset is abbreviated as
“W”, “M”, “G” and “F” for TONIOT weather monitor, modbus
sensor, GPS tracker and fridge monitor, respectively.

Shared Intrusion To perform knowledge transfer to facili-
tate the intrusion detection for the target II domain, 5 shared
categories are picked out from the aforementioned datasets,
namely benign class, DoS attack, DDoS attack, reconnaissance
attack and password attack. These shared common categories
are representatives of the majority of modern intrusions faced
by networks and IoT devices, they account for 99.85%,
99.96%, 54.2%, 100% and 77.03% amounts of records in
the CICIDS2017, NSL-KDD, UNSW-NB15, UNSW-BOTIOT
and UNSW-TONIOT dataset, respectively. Therefore, after
transferring the knowledge, most modern intrusion attacks
faced by the IoT domain can be detected.

Implementation Details We implement the JSTN model
using the PyTorch [50] DL framework, and deploy the exper-
iment on a server equipped with Intel Core i9-9900K CPU
and Nvidia Tesla V100 GPU. All feature encoders are two-
layer fully-connected neural networks with LeakyReLU [51]
as the activation function following [1], [34]. Both the shared
classifier C and the domain discriminator D are single layer
neural networks. For hyperparameter settings, we empirically
set α = 0.1, β = 0.004, λ = 0.001, γ = 0.1, η = 0.001,
T1 = 10, T2 = 5, and the dimension of the domain-
invariant common feature subspace dC is set to 3. We also
verify the parameter sensitivity in Section V-D to indicate the
JSTN can perform stably and robustly under varied parameter

settings. Follow [1], we optimise the JSTN model using Adam
gradient descent optimiser and set the number of epochs to
1000. Following [44], [52], we mainly use accuracy on the
unlabelled target II data as the evaluation metrics, as well
as category-weighted precision (P), recall (R) and F1-score
(F) [53] to evaluate the performance. We define true positive
TP (k) to be the number of unlabelled target II instances which
belong to intrusion category k and are correctly predicted as
intrusion category k, similar for true negative TN (k), false
positive FP (k) and false negative FN (k). Hence, the category-
weighted precision, recall and F1-score are mathematically
defined as follows:

Precision =

K∑
k=1

|X (k)
TU |

nTU
· TP (k)

TP (k) + FP (k)

=

K∑
k=1

|X (k)
TU |

nTU
· Precision(k) ,

(23)

Recall =

K∑
k=1

|X (k)
TU |

nTU
· TP (k)

TP (k) + FN (k)

=

K∑
k=1

|X (k)
TU |

nTU
·Recall(k) ,

(24)
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TABLE IV
INTRUSION DETECTION PRECISION, RECALL AND F1-SCORE OF

DA-BASED METHODS.
SN + SI

→ TI

N +M → G K +B → W

Metrics P R F P R F

SB-TNT 0.871 0.932 0.900 0.543 0.735 0.624

SB-DDAC 0.871 0.932 0.901 0.720 0.784 0.734

SB-DDAS 0.870 0.932 0.900 0.639 0.758 0.671

SB-STN 0.931 0.930 0.931 0.723 0.764 0.717

STN 0.951 0.930 0.938 0.747 0.793 0.745

CWAN 0.871 0.928 0.898 0.650 0.772 0.684

JSTN (Ours) 0.954 0.950 0.952 0.787 0.808 0.763

F1 =

K∑
k=1

|X (k)
TU |

nTU
· 2 · Precision(k) ·Recall(k)

Precision(k) +Recall(k)
. (25)

Baseline Methods We utilise 6 state-of-the-art HDA meth-
ods as our comparing methods, including the CWAN [35],
which is capable to transfer knowledge from two source
domains to the target domain, the double-source STN [34],
as well as the single-source STN, TNT [32], DDAC and
DDAS [33], which can transfer knowledge from a single
source domain to the target domain. For these 4 single-source
methods, we perform the SNI → TII and SII → TII transfer,
and use the higher result as their final evaluation result, which
is denoted as single-best (SB) during experiment. Besides,
3 machine learning techniques are also utilised, including a
two-layer neural network, support vector machine and random
forest. These three machine learning learners are trained using
the labelled target II data, and then perform ID on the
unlabelled target II domain. They are denoted as NN, SVM
and RF, respectively.

B. Performance Evaluation

We firstly analyse the intrusion detection performance of
the JSTN compared with other state-of-the-art counterparts on
several randomly selected representative tasks. The evaluation
results are presented in Table I - IV. In Table I, the default ratio
between the amount of labelled and unlabelled target II domain
instances is set to 1 : 2 when TII = B, and is set to 1 : 5
otherwise. As indicated in Table I, JSTN outperforms all other
comparing methods over all tasks. Specifically, comparing
with the double-source counterpart CWAN and STN, the
best-performed single source method SB-STN, and the best
traditional supervised ML method SVM, the JSTN yields a
9.42%, 8.02%, 7.75% and 13.28% performance boost, which
is a significant improvement of detection accuracy. It is natural
to observe this since although CWAN utilises both the source
NI and II domain to facilitate intrusion detection for the target
II domain, it does not specifically pay attention to semantic
transfers such as the implicit or explicit semantics, which
therefore verifies the usefulness of the robust semantic knowl-
edge transfer utilised by the JSTN. Besides, the STN method
does not consider the scenario semantics, which therefore
results in hindered intrusion detection performance when huge
heterogeneities present between NI and II domains.

To verify the effectiveness of methods under varied nTL :
nTU ratios, especially under the extreme case where the
amount of unlabelled target II domain data is significantly
higher than the amount of labelled target II domain instances,
6 tasks are randomly selected with the nTL : nTU ratio varied
between 1 : 2 and 1 : 50. Following [1], [34], [37], the
1 : 50 case is sufficient to represent an extremely label-scarce
scenario. As shown in Table II and III, the JSTN outperforms
all baseline methods by a large margin. Overall, the JSTN
achieves a 7.36%, 6.6%, 5.77% and 9.52% amount of perfor-
mance boost compared with the double-source method CWAN,
STN, the best-performed single source baseline SB-STN, and
the best-performed traditional supervised ML method SVM,
respectively. Specifically, under the extreme 1 : 50 case, the
JSTN also shows robust performance, its performance only
drops 1.13% compared with the 1 : 10 case while still
outperforms the best DA method SB-STN and the best ML
method NN by 5.57% and 8.97%, which not only verifies
the effectiveness of the JSTN when performing semantic
knowledge transfer to facilitate intrusion detection in the IoT
target domain, but also testifies the robustness of the JSTN
when working on extremely scarcely-labelled target II domain.

To further verify the efficacy of methods under evaluation
metrics other than intrusion detection accuracy, we utilise
precision, recall and F1-score as additional metrics and present
the results on two randomly selected tasks as representatives
in Table IV. As we can see, the JSTN achieves the high-
est precision, recall and F1-score among these tasks over
other DA-based baseline methods. By achieving the highest
precision, it indicates that the JSTN model achieves the
highest correctness among all network traffic that it flags as
malicious attacks. Besides, achieving the best recall reveals
the JSTN can detect most amount of malicious traffic out
of all malicious behaviours, which indicates its effectiveness
in terms of intrusion detection. Overall, the highest F1-score
indicates the JSTN successfully balances between flagging as
many intrusions from all malicious behaviours as possible,
and meanwhile avoid triggering too many false alarms. Hence,
together with the overall accuracy as indicated in Table I - III,
the best performance on all evaluation metrics achieved by the
JSTN model verifies its superiority.

TABLE V
INTRUSION DETECTION ACCURACY OF THE JSTN AND ITS ABLATED

COUNTERPARTS.
Ablated Method C +W

→ B
K +M
→ G

N + F
→ B

Avg

Full 69.69 87.10 86.94 81.24
α = 0 68.94 86.42 83.27 79.54

No WI 67.96 86.47 85.14 79.86

β = 0 67.44 86.29 85.47 79.73

λ = 0 66.99 86.58 85.20 79.59

β = λ = 0 66.85 86.19 85.40 79.48

No PLR 67.73 86.60 83.89 79.41

η = 0 65.40 86.74 84.18 78.77

γ = 0 66.57 86.73 85.17 79.49

SNI only 67.18 86.71 84.93 79.61

SII only 62.59 85.34 85.12 77.68
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C. Ablation Study

Component Ablation Study After performing the overall
performance evaluation, we now verify the usefulness of each
constituting semantic transfer component of the JSTN. The
JSTN variants include the following: (1) α = 0, which
ablates the weighted implicit semantic transfer; (2) No WI,
which turns off the weighting mechanism during implicit
semantic transfer; (3) β = 0, which removes the centroid-
level explicit semantic alignment; (4) λ = 0, which ab-
lates the representative-level explicit semantic alignment; (5)
β = λ = 0, which completely turns off the hierarchical
explicit alignment; (6) No PLR, which assigns pseudo-label
directly from the shared classifier C, without using the pseudo-
label refiner PLR that is geometric-aware; (7) η = 0, which
removes the categorical distribution preservation used during
scenario semantic transfer; (8) γ = 0, which turns off the
domain discriminator D, part of the scenario semantic; (9)
SNI Only, which only uses a source NI domain, without
considering the scenario semantic; (10) SII Only, which only
uses a source II domain, without utilising the knowledge rich
source NI domain.

The ablation performance on 3 randomly selected represen-
tative tasks are indicated in Table V. The JSTN outperforms
all its ablated variants, which verifies that all semantic transfer
components are indispensable to facilitate a robust knowl-
edge transfer. Without any constituting semantic, negative
effects will be caused, which therefore leads to impaired
intrusion detection performance. Among all these components,
the weighted implicit semantic contributes around 1.7% of
performance improvement, while the weighting mechanism
utilised during implicit semantic raises the performance by
1.38%. The hierarchical explicit semantic alignment con-
tributes 1.76% performance improvement on average. Specif-
ically, only using the centroid-level or the representative-level
explicit semantic alignment will cause the performance to
drop by 1.51% and 1.65%, respectively, which verify the
importance of the hierarchical explicit semantic alignment.
The pseudo-label refiner yields 1.83% performance boost,
which verifies the necessity to refine pseudo-labels. In terms of
scenario semantic, using the domain discriminator will bring
1.75% performance improvement. As part of the scenario
semantic, the categorical distribution knowledge preservation
yields 2.47% performance increase. Additionally, the SNI

only variant presents a performance reduction of around 1.63%
without the help of scenario semantic brought by the SII

domain, and the SII only variant reduces the performance by
3.56% due to lack of data and intrusion knowledge contained
in it. The degraded performance of single domain variants
further verifies the usefulness of the scenario semantic.

Necessity of Scenario Semantic To have a closer look
of the importance and necessity of the scenario semantic we
proposed, detailed analyses are performed as indicated in Table
VI. When transferring knowledge to facilitate the intrusion
detection of the target II domain, three variants are considered
as follows: I, only transfer the knowledge via a single SNI

domain; II, transfer the knowledge via two source NI domains
SNI1 and SNI2, to make it a comparable replacement of SII ,

SNI2 has the same scale as SII ; III, transfer the knowledge
via the scenario semantic-enabled setting, i.e., a SNI domain
facilitated with a small-scale SII domain.

As we can observe from Table VI, the scenario semantic-
enabled variant achieves superior performance than other two
variants by 1.63% and 1.45% on average, respectively. Hence,
it indicates that a single source NI domain may present an
overly large heterogeneous semantic gap, which will signif-
icantly hinder the intrusion detection performance without
the help from the scenario semantic. Besides, by facilitating
the source NI domain SNI with another NI domain, the
semantic gap caused by domain heterogeneity is not effectively
shortened, which is revealed by nearly the same performance
between variant I and II. Furthermore, by leveraging a source
II domain which is even 2 - 6 times smaller than the NI domain
counterpart in scale, it can yield positive scenario semantic
transfer to bridge the domain gap between heterogeneous NI
and II domains, as verified by the superior performance.

Significant Test Verification To verify the performance
gains achieved by the full JSTN over its ablated variants
are statistically significant, i.e., not observed randomly by
chance, significant T-tests with 0.05 as the significant threshold
are performed on 3 randomly picked tasks, each is repeated
10 times. The test results are illustrated in Figure 5. The
significant threshold − log(0.05) is indicated by the grey
shaded area in the centre of each subfigure. Each dimension
represents an ablated JSTN variant, the higher the value is,
the more significant the performance gain is on this ablated
component. As we can see, the full JSTN has a wider coverage
on all dimensions under all tasks. A wider coverage than the
grey shaded area indicates the test results among all ablated
variants are significant. Hence, the usefulness and necessity of
all constituting components of JSTN is verified with statistical
significance.

D. Parameter Sensitivity Analysis

To verify the parameter sensitivity of the JSTN model, we
vary five major hyperparameters, i.e., α, β, λ, η and γ within
their corresponding reasonable value ranges. We randomly
select four tasks as representatives and plot the results in
Figure 6. The best-performed baseline method for each task
is also plotted with the corresponding colour in dashed lines.
As we can notice, when parameters vary, the performance of
the JSTN model remains relatively stable without incurring
severe fluctuation, as indicated by the relatively stable trend
of each solid line. Besides, the solid lines stay above their
corresponding coloured dashed line in nearly all parameter
ranges, which means the JSTN outperforms the corresponding
best-performed counterpart under nearly all parameter ranges.
Therefore, it verifies the robustness and effectiveness of the
JSTN model.

E. Computational Efficiency

We further measure the computational efficiency of the
JSTN model. The results on 6 randomly selected representative
tasks are presented in Table VII for average training time
per epoch, and in Table VIII for average inference time per
unlabelled target instances. We only compare the JSTN with
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TABLE VI
INTRUSION DETECTION PERFORMANCE WHEN TRANSFERRING SEMANTIC KNOWLEDGE TO FACILITATE TARGET II DOMAIN INTRUSION DETECTION VIA

I: ONLY A SINGLE SOURCE NI DOMAIN; II: TWO SOURCE NI DOMAINS; III: A SOURCE NI DOMAIN WITH A SMALL-SCALE SOURCE II DOMAIN

Task C +W → B N + F → B N+B → W K+W → B N +W → G Avg

I: SNI → TII C → B
67.18

N → B
84.93

N → W
86.96

K → B
68.64

N → G
84.88

78.52

II: SNI1 + SNI2 → TII
C +K → B

66.30
N +K → B

84.84
N+K → W

87.04
K + C → B

68.28
N + C → G

86.03 78.70

C +N → B
68.91

N + C → B
84.87

N +C → W
87.08

K +N → B
67.86

N +K → G
85.78

III: SNI + SII → TII 69.69 86.94 87.78 69.73 86.59 80.15

Fig. 5. To verify the performance gains of the full JSTN over its ablated variants are statistically significant, significant T-tests with 0.05 as the significant
threshold are conducted on 3 randomly picked tasks. The − log(0.05) significant threshold are indicated by the grey shaded area. In each dimension, the
higher the value is, the more significant the performance gain is.
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Fig. 6. Parameter sensitivity of the JSTN for hyperparameter α, β, λ, η and γ under their corresponding reasonable ranges on four randomly selected tasks.
Each colour represents a task. Each colour has two lines, the solid line indicates the JSTN performance, and the dashed horizontal line indicates the accuracy
of the best-performed baseline method of the corresponding task.

TABLE VII
AVERAGE TRAINING TIME PER EPOCH (MEASURED IN SECOND, THE LOWER THE BETTER).

SN + SI

→ TI

C +W
→ B

C +B
→ G

N +G
→ B

N +B
→ W

K +W
→ B

K +M
→ G

Avg

STN 0.72 0.75 0.37 0.38 0.48 0.34 0.51

CWAN 1.10 1.14 0.59 0.61 0.76 0.55 0.79

JSTN (Ours) 0.50 0.51 0.31 0.36 0.40 0.30 0.40

TABLE VIII
AVERAGE INFERENCE TIME PER UNLABELLED TARGET INSTANCE (MEASURED IN MICROSECOND (10−6 SECOND), THE LOWER THE BETTER).

SN + SI

→ TI

C +W
→ B

C +B
→ G

N +G
→ B

N +B
→ W

K +W
→ B

K +M
→ G

Avg

STN 81.2 52.6 57.6 55.1 52.8 58.8 59.68

CWAN 56.9 49.4 78.1 58.8 65.0 66.2 62.40

JSTN (Ours) 0.21 0.22 0.20 0.21 0.23 0.18 0.21

top-performed counterparts STN and CWAN. As indicated in
Table VII, the JSTN demonstrates the most efficient per-epoch
training speed. The per-epoch performance boost achieved by

JSTN is 21.6% more efficient compared with the second-
best performed counterpart STN. The most efficient per-epoch
training speed reflects that the JSTN enjoys a relatively low
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computational complexity. The STN, CWAN and JSTN require
300, 500 and 1000 epochs to train, therefore, the overall
training time of these three methods stays comparable with
each other. Given that the model training will be performed on
relatively resource-rich devices, the computational cost of the
JSTN model is satisfying. On the other hand, when performing
the inference for unlabelled target intrusion data, the JSTN
achieves the lowest per-instance inference time, as indicated
in Table VIII. The JSTN even achieves 102 times performance
boost, thanks to the JSTN’s excellent efficiency. Overall, the
results verify the computational efficiency of the JSTN model.

VI. CONCLUSION

In this paper, considering that the knowledge-rich network
intrusion domain can facilitate more accurate intrusion detec-
tion for the data scarce IoT domain, we propose the JSTN
network. Since there exists a significant semantic gap between
NI and II domains due to heterogeneities, we utilise a small-
scale auxiliary source II domain to endow the source NI
domain with scenario semantics. The categorical distribution
knowledge is preserved between source domains, and the
domain discriminator shortens the source domain gap, it also
minimises the divergence between the whole source domain
and the target domain, so that the source-target knowledge
transfer effort will be eased. To preserve the categorical
correlation enriched in the predicted distribution, we leverage
the weighted implicit semantic transfer to achieve a more
fine-grained knowledge learning and circumvent confounded
categories for better discriminability. The implicit knowledge
learning is guided by a weighting mechanism which depends
on the divergence between each source domain and the
target domain, so that well-learned source domain will be
slightly suppressed while the more diverged source domain
will be emphasised adaptively. Besides, we also tackle the
problem from the distance perspective via the hierarchical
explicit semantic alignment. Specifically, the centroid-level
alignment achieves a more discriminative shared feature repre-
sentation from a global perspective, while the representative-
level alignment promotes better concentration during align-
ment and remains computation efficient. To better utilise
unlabelled target II domain data while not suffering from
the negative transfer brought by wrongly-assigned pseudo-
labels, a geometric-aware pseudo-label refiner is used to boost
the pseudo-label assignment confidence. By jointly utilising
these three semantic transfer mechanisms, the JSTN model
can learn a domain-invariant feature representation with fine-
grained knowledge and high discriminability to facilitate more
accurate IoT intrusion detection. Comprehensive experiments
on several well-known ID datasets show the effectiveness of
the JSTN compared with several state-of-the-art counterparts.
The insight analyses also demonstrate the usefulness and
necessity of each proposed semantics, which supports the joint
semantic transfer of the JSTN.
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APPENDIX

The table below contains the notations used in this paper,
and their corresponding interpretation. Note that the symbol
∗∗ ∈ {SN, SI, TL, TU}, which stands for source network
domain, source IoT domain, labelled target domain and un-
labelled target domain, respectively. The ∗∗ carries the same
meaning in the following notations.
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TABLE IX
NOTATIONS AND THEIR CORRESPONDING INTERPRETATION.

Notation Interpretation
D∗∗ The intrusion domain
X∗∗ The network traffic features of domain ∗∗
Y∗∗ The category labels of domain ∗∗
x∗∗i The ith instance of domain ∗∗
y∗∗i The label of the ith instance of domain ∗∗
n∗∗ Number of instances in domain ∗∗
d∗∗ The feature dimension of domain ∗∗
K Total number of categories
dC The dimension of the common feature subspace

f(xi) The feature representation of instance xi in the common
feature subspace

E∗∗(xi) The feature encoder for domain ∗∗
LSSD The scenario semantic loss yielded by the discriminator
C The shared classifier
T1 The temperature hyperparameter used in scenario seman-

tic transfer
X (k)

∗∗ Class k instances in domain ∗∗
|X (k)

∗∗ | Number of class k instances in domain ∗∗
q(k) The predicted probability distribution of class k for the

source NI domain
p(k) The predicted probability distribution of class k for the

source II domain
LSSC The Scenario semantic loss yielded by distribution match-

ing
T2 The temperature hyperparameter used in weighted implicit

semantic transfer
LS∗
sf The soft loss based on source domain S∗ in the weighted

implicit semantic transfer, S∗ ∈ {SN, SI}
Lhd The hard loss of target TL domain in the weighted implicit

semantic transfer
Lce The cross entropy loss
µ
(k)
S∗ The class k centroid of source domain S∗ ∈ {SN, SI}

d<SN,TL> The divergence between source NI domain and labelled
target II domain

ω<SN,TL> The weight for source NI domain in the weighted implicit
semantic transfer

LWIS The weighted implicit semantic transfer loss
y<NN>
i The neural network label for unlabelled target instance xi

µ(k) The class k centroid of all labelled source and target
instances

y<GS>
i The geometric similarity-based label for unlabelled target

instance xi

XT The features of target domain combined with labelled and
pseudo-labelled target instances

YT The labels of target domain combined with labelled and
pseudo-labelled target instances

x̂i Pseudo-labelled unlabelled target instance xi

ŷi The assigned pseudo-label for unlabelled target instance
xi

LESC The global centroid-level explicit semantic transfer loss
LESR The local representative-level explicit semantic transfer

loss
R Number of representatives selected for each category

r
(k)
S (i) The ith class k representative of the source domain S (S =

SN ∪ SI)
Lsup The supervision loss of the source domain S (S = SN ∪

SI)
β, λ, γ, η The hyperparameters that balance LESC , LESR, LSSD

and LSSC , respectively.
TP (k) True positive value for category k
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